Conserved structural motifs located in distal loops of aphthovirus internal ribosome entry site domain 3 are required for internal initiation of translation.
نویسندگان
چکیده
A comparison of picornavirus internal ribosome entry site (IRES) secondary structures revealed the existence of conserved motifs located on loops. We have carried out a mutational analysis to test their requirement for IRES-driven translation. The GUAA sequence, located in the aphthovirus 3A loop, did not tolerate substitutions that disrupt the GNRA motif. Interestingly, this motif was found at similar positions in all picornavirus IRESs, suggesting that it may form part of a tertiary-structure element. The RAAA tetranucleotide located in the 3B loop was conserved only in cardiovirus and aphthovirus. A mutational analysis of the RAAA motif revealed that activities of 3B loop mutants correlated with both the presence of a sequence close to CAAA at the new 3B loop and the absence of reorganization of the 3B and 3C stem-loops. In support of this conclusion, insertion of a large number of nucleotides close to the 3B loop, which was predicted to reorganize the 3B-3C stem-loop structure, led to defective IRES elements. We conclude that the aphthovirus IRES loops located at the most distal part of domain 3, which carries GNRA and RAAA motifs, are essential for IRES function.
منابع مشابه
Designing synthetic RNAs to determine the relevance of structural motifs in picornavirus IRES elements.
The function of Internal Ribosome Entry Site (IRES) elements is intimately linked to their RNA structure. Viral IRES elements are organized in modular domains consisting of one or more stem-loops that harbor conserved RNA motifs critical for internal initiation of translation. A conserved motif is the pyrimidine-tract located upstream of the functional initiation codon in type I and II picornav...
متن کاملRNA--protein interactions within the internal translation initiation region of encephalomyocarditis virus RNA.
Various derivatives of the internal ribosomal entry site (IRES) of encephalomyocarditis virus (EMCV) RNA have been used to analyze by UV-cross-linking its interaction with mRNA binding proteins from ascites carcinoma Krebs-2 cells. A doublet of proteins with Mr 58 and 60 kD bound to two regions of the IRES. One site is centered at nt 420-421 of EMCV RNA whereas the other is located between nt 3...
متن کاملConserved nucleotides within the J domain of the encephalomyocarditis virus internal ribosome entry site are required for activity and for interaction with eIF4G.
The internal ribosome entry site (IRES) elements of cardioviruses (e.g., encephalomyocarditis virus [EMCV] and foot-and-mouth disease virus) are predicted to have very similar secondary structures. Among these complex RNA structures there is only rather limited complete sequence conservation. Within the J domain of the EMCV IRES there are four highly conserved nucleotides (A704, C705, G723, and...
متن کاملInsights into Structural and Mechanistic Features of Viral IRES Elements
Internal ribosome entry site (IRES) elements are cis-acting RNA regions that promote internal initiation of protein synthesis using cap-independent mechanisms. However, distinct types of IRES elements present in the genome of various RNA viruses perform the same function despite lacking conservation of sequence and secondary RNA structure. Likewise, IRES elements differ in host factor requireme...
متن کاملEvidence of reciprocal tertiary interactions between conserved motifs involved in organizing RNA structure essential for internal initiation of translation.
Internal ribosome entry site (IRES) elements consist of highly structured RNA regions that determine internal initiation of translation. We have previously shown that the foot-and-mouth disease virus (FMDV) IRES contains a GNRA tetraloop spanning residues G178UAA181. Here we show that tertiary RNA interactions dependent on the GNRA motif determine the structural organization of the central doma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 71 5 شماره
صفحات -
تاریخ انتشار 1997